Anatomisation with slicing: a new privacy preservation approach for multiple sensitive attributes

نویسندگان

  • V. Shyamala Susan
  • T. Christopher
چکیده

An enormous quantity of personal health information is available in recent decades and tampering of any part of this information imposes a great risk to the health care field. Existing anonymization methods are only apt for single sensitive and low dimensional data to keep up with privacy specifically like generalization and bucketization. In this paper, an anonymization technique is proposed that is a combination of the benefits of anatomization, and enhanced slicing approach adhering to the principle of k-anonymity and l-diversity for the purpose of dealing with high dimensional data along with multiple sensitive data. The anatomization approach dissociates the correlation observed between the quasi identifier attributes and sensitive attributes (SA) and yields two separate tables with non-overlapping attributes. In the enhanced slicing algorithm, vertical partitioning does the grouping of the correlated SA in ST together and thereby minimizes the dimensionality by employing the advanced clustering algorithm. In order to get the optimal size of buckets, tuple partitioning is conducted by MFA. The experimental outcomes indicate that the proposed method can preserve privacy of data with numerous SA. The anatomization approach minimizes the loss of information and slicing algorithm helps in the preservation of correlation and utility which in turn results in reducing the data dimensionality and information loss. The advanced clustering algorithms prove its efficiency by minimizing the time and complexity. Furthermore, this work sticks to the principle of k-anonymity, l-diversity and thus avoids privacy threats like membership, identity and attributes disclosure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slicing : A Efficient Method For Privacy Preservation In Data Publishing

In this paper we propose and prove a new technique called “Overlapping Slicing” for privacy preservation of high dimensional data. The process of publishing the data in the web, faces many challenges today. The data usually contains the personal information which are personally identifiable to anyone, thus poses the problem of Privacy. Privacy is an important issue in data publishing. Many orga...

متن کامل

Suppression Slicing – using l-diversity

An important problem in publishing the data is privately held data about individuals without revealing the sensitive information about them. Several anonymization techniques, such as suppression, bucketization and slicing have been designed for privacy preservation in microdata publishing. Suppression involves not releasing a value at all it leads to the utility loss while the anonymized table ...

متن کامل

Perpetuate Data Report based on the Slicing Approach

Anonymization is a technique preserving privacy on micro data, we have so many anonymization techniques like generalization, bucketization all these are privacy preserving on sensitive data, with these techniques there is no security for the data, generalization loses the important data and bucketization is not preventing membership disclosure and does not apply on the data for clear separation...

متن کامل

Decomposition: Privacy Preservation for Multiple Sensitive Attributes

Aiming at ensuring privacy preservation in personal data publishing, the topic of anonymization has been intensively studied in recent years. However, existing anonymization techniques all assume each tuple in the microdata table contains one single sensitive attribute (the SSA case), while none paid attention to the case of multiple sensitive attributes in a tuple (the MSA case). In this paper...

متن کامل

Segmenting: A New-Fangled Advance to Isolation Conserving Facts Distributing

Re-identification is a major privacy threat to public datasets containing individual records. Many privacy protection algorithms rely on generalization and suppression of “quasiidentifier" attributes such as ZIP code and birthdate. Several anonymization techniques, such as generalization and bucketization, have been designed for privacy preserving micro data publishing. Recent work has shown th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016